3.119 \(\int \frac{1}{x \cos ^{\frac{3}{2}}(a+b \log (c x^n))} \, dx\)

Optimal. Leaf size=59 \[ \frac{2 \sin \left (a+b \log \left (c x^n\right )\right )}{b n \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}}-\frac{2 E\left (\left .\frac{1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{b n} \]

[Out]

(-2*EllipticE[(a + b*Log[c*x^n])/2, 2])/(b*n) + (2*Sin[a + b*Log[c*x^n]])/(b*n*Sqrt[Cos[a + b*Log[c*x^n]]])

________________________________________________________________________________________

Rubi [A]  time = 0.0410599, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {2636, 2639} \[ \frac{2 \sin \left (a+b \log \left (c x^n\right )\right )}{b n \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}}-\frac{2 E\left (\left .\frac{1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{b n} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Cos[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(-2*EllipticE[(a + b*Log[c*x^n])/2, 2])/(b*n) + (2*Sin[a + b*Log[c*x^n]])/(b*n*Sqrt[Cos[a + b*Log[c*x^n]]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \cos ^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\cos ^{\frac{3}{2}}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac{2 \sin \left (a+b \log \left (c x^n\right )\right )}{b n \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}}-\frac{\operatorname{Subst}\left (\int \sqrt{\cos (a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=-\frac{2 E\left (\left .\frac{1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{b n}+\frac{2 \sin \left (a+b \log \left (c x^n\right )\right )}{b n \sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}}\\ \end{align*}

Mathematica [A]  time = 0.152792, size = 54, normalized size = 0.92 \[ \frac{2 \left (\frac{\sin \left (a+b \log \left (c x^n\right )\right )}{\sqrt{\cos \left (a+b \log \left (c x^n\right )\right )}}-E\left (\left .\frac{1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )\right )}{b n} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Cos[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(2*(-EllipticE[(a + b*Log[c*x^n])/2, 2] + Sin[a + b*Log[c*x^n]]/Sqrt[Cos[a + b*Log[c*x^n]]]))/(b*n)

________________________________________________________________________________________

Maple [A]  time = 2.377, size = 139, normalized size = 2.4 \begin{align*} -2\,{\frac{\sqrt{ \left ( \sin \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) ,\sqrt{2} \right ) -2\, \left ( \sin \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}\cos \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) }{n\sin \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \sqrt{2\, \left ( \cos \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}-1}b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/cos(a+b*ln(c*x^n))^(3/2),x)

[Out]

-2/n*((sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(2*sin(1/2*a+1/2*b*ln(c*x^n))^2-1)^(1/2)*EllipticE(cos(1/2*a+1/2*b*
ln(c*x^n)),2^(1/2))-2*sin(1/2*a+1/2*b*ln(c*x^n))^2*cos(1/2*a+1/2*b*ln(c*x^n)))/sin(1/2*a+1/2*b*ln(c*x^n))/(2*c
os(1/2*a+1/2*b*ln(c*x^n))^2-1)^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/cos(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x*cos(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{x \cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/cos(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")

[Out]

integral(1/(x*cos(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/cos(a+b*ln(c*x**n))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \cos \left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/cos(a+b*log(c*x^n))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(x*cos(b*log(c*x^n) + a)^(3/2)), x)